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I. INTRODUCTION 

There are separate literatures on normative models of capital 
accumulation, fisheries management, and reservoir operation. However, 
generic models of each type share a common mathematical structure. The 
models often include uncertainty in the length of time to which planning 
should apply and in the future consequences of present decisions. 

The present paper investigates the structure of optimal decision making 
under uncertainty for general single sector growth models, for individual 
optimal consumption and savings models, for models of a single fish species 
with pooled age classes, and for models of a single reservoir. The results 
extend and unify some of those of Amir (1967), Bewley (1977), Levhari and 
Srinvinasan (1969), Hakaanson (1970), Mirman (1971), Brock and Mirman 
(1972, 1973), Miller (1974), Sobel (1975), Whitt (1975a), Schechtman 
(1976), Schechtman and Escudero (1977), and Yaari (1976). Also we 
present new and simpler proofs for most of the theorems which generalize 
results of the authors above. 

For brevity, we use the terminology of capital accumulation. Let the first 
consumption and reinvestment decisions be made in period n and the last 
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ones in period 1. At the beginning of each period t ( t  = 1, 2, ...) let x ,  denote 
the capital on hand in units of dollars or physical quantities as the context 
dictates. The decisions in period t are y , ,  namely the amount of x ,  that is 
reinvested, and z ,  = x, - y ,  , the amount consumed. Let 

y ,  E Y ( x , )  ( I  = 1, L..) 
constrain the reinvestment and consumption decisions. The connection 
between reinvestment decisions and accumulated capital is 

XI+I =s(y , ,D , ) ,  ( 1  *2) 

where D, , D, ,..., D, are assumed to be independent random variables that 
are distributed as the generic random variable D. We assume for each t that 
x, lies in a convex reference set X and that C = ( ( x ,  y ) :  y E Y(x) ,  x E X) is a 
convex set. 

Let G ( x , , y , )  denote the utility in period t of having an initial capital x ,  
and reinvesting y , .  Let u denote the single-period discount factor. The 
generic problem is maximization of expected discounted utility, namely 
E x:=, u' - IG(x, ,  y,) ,  where n < cz). With a consumption horizon of n 
periods until termination, let A ,(x) denote an optimal reinvestment decision 
and x - A , ( x )  an optimal consumption decision. (For a fishery model, 
x - A , ( x )  is the amount harvested, and A, (x )  is the population size after 
harvesting ceases. For a reservoir model, x is the amount of water in the 
reservoir, and x - A , (x)  is the amount discharged.) 

The real line is indicated by R, and R, denotes [0, a). If z E R then (z)' 
denotes max(0,z). Derivatives (partial or regular) are from the left when 
necessary. If w(. ,  .) is a function of two variables, then w"'(u, u )  and 
w(* ' (u,  v )  denote the partial derivatives with respect to the first and second 
arguments. If a E R and b E R, then a A b denotes min(a, b). 

Suppose w is a real-valued concave function on R and D is a random 
variable for which the expectations r(z) = Ew(z - D )  and Ew'(z - D) both 
exist. Then ~ ' ( z )  = Ew'(z - D )  can be justified by the monotonicity in 6 of 
[ w(z - 0) - w(z  - D - S)]/S (because w is concave) and the Dominated 
Convergence Theorem (Royden 1963). 

2. NEW FEATURES OF THE MODEL 

The results in this paper relax the assumptions of the previously cited 
papers in five important ways. First, many of our results do not assume that 
single-period utility depends only on consumption, that is G(x, y )  = g(x - y ) .  
In renewable resource models, the benefits of a harvest x ,  - y ,  are offset by 
harvesting costs that typically depend separately on the stock size x ,  and the 
amount harvested x ,  - y , .  
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Second, when the utility function does depend only on consumption, we 
assume neither g ' (0 )  = fco nor strict concavity of g(.).  Neither assumption 
is salient for many renewable resource models. However, one or both of the 
assumptions is found in most of the cited references, most particularly 
Bewley (1977), Brock and Mirman (1972), Mirman and Zilcha (1975), and 
Schechtman (1976). Thus their models fail to encompass either linear 
utilities or quadratic utilities, or both. These cases are empirically useful. 

Third, we avoid assumptions about s(., .)  (in' (1.2)) that would block 
applications to renewable resource models. The Inada condition 

s'"(0, . )  = +a, s y a ,  .) = 0 

are not imposed. Note that the simple case s ( y ,  d)  = py + d violates the 
Inada condition as do quadratic functions. For several of the results it is not 
assumed that s(., d)  is nondecreasing for each fixed value d of D , .  We avoid 
continuity and ordering assumptions about s ( y ,  .)  such as are found in 
Brock and Mirman (1972), Schechtman (1976), and Bewley (1977). When 
G ( x , y )  = p  . (x - y ) ,  new results are presented that assume only pseudocon- 
cavity of s(., d )  for each fixed value d of D , .  This last assumption is often 
made in models of renewable resources. 

Fourth, eflective constrainfs are allowed in the model. We do not assume 
existence of interior solutions. In renewable resource models, the absence of 
Inada conditions typically causes some constraints to be active at an 
optimum. This makes the analysis more complex because it is no longar 
possible to assume that the derivative of an optimal value function equals 
g'(x,  .Y - A ,,(x)). The methods of proof, therefore, differ significantly from 
those in previously cited papers. 

Finally, a unified treatment is presented for both the finite and infinite 
horizon problems. Our proof that the infinite horizon optimal policy A ( x )  is 
the limit of the A,(x)'s is more straightforward than those of Schechtman 
and Escudero (1977) (who assume s(-v,, 0,) = py, + 0,) and Brock and 
Mirman (1972) (who assume strict concavity, interior solutions and impose 
other restrictive conditions) although our model is sufficiently general to 
encompass renewable resource applications. 

Also, we present a straightforward short proof that a unique stationary 
distribution of wealth exists. The proof uses a result of Rosenblatt (1967) 
and is much shorter and simpler than proofs of essentially the same theorem 
by Brock and Mirman (1972), Brock and Majumdar (1975), and Mirman 
and Zilcha (1975). 

The +model in Bewley (1977) is richer probabilistically than ours. 
Although his model requires G(x, y )  = g(x - y )  and s( y ,  d )  = y + d,  g is 
stochastic with { ( g , ,  D , ) }  being a stationary stochastic process. 
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3. ASSUMPTIONS 

The following assumptions are made in various combinations. 

G is fin,ite, concave, and continuous on C; 
for each y, G( . ,y )  is nondecreasing on (x: ( x , y )  E C ) ;  

G(x, y + 7) - G(x, y )  < G(x + A, y + 7) - G(x + A, Y )  

G is nonnegative and continuous on C ;  

(3.1) 
(3.2) 
(3.3) 

(3.4) 
(3.5) for each d,  s ( . , d )  is continuous and concave on the set 

(3.6) for each d, s(., d )  is continuous and concave on the set [O,y"(d)] 

(3 .7)  for each d, s(., d )  is nondecreasing on Y; 
(3.8) G ( x , y ) = p .  ( x - ~ ) , p > O ;  
(3.9) Y(x) = 10, X I ,  x E X .  

for all 
y > 0, 1 > 0 with all arguments in C; 

Y = U.\.EA Y(x); 

and convex on the set [ yo(d), 00);  

Assumption (3.4) is slightly deceptive because several ajticles, including 
Phelps (1962). Hakaason (1970), and Miller (1974), have G(x,y) = 
log(x - y ) ,  for x - y  < > 0. However, nonnegativity of G is equivalent to 
having a uniform lower bound. Suppose, for example, that G ( x , y )  2 -B if 
(x, y )  E B (B > 0), and let G*(x ,y)  = G(x,y)  + B. Then a policy is optimal 
with utility function G* if and only if it is optimal also for G. Moreover, G* 
is nonnegative on C. Assumption (3.3) is equivalent to supermodularity of G 
on C. Topkis (1978) discusses supermodularity and its consequences for 
optimization. 

4. OPTIMAL POLICIES 

From standard dynamic programming arguments, the generic problem of 
maximizing E C,"I, a'-'G(x,,y,) leads to the recursion 

f"(X) = suP{Jn(x,y):Y € Y(X)}, x E X ,  (4.1 

J , , ( x , y ) = G ( - ~ , y ) + a E f , - , ( s [ y , D ] ) ,  Y E  W), x E X  (4.2) 

0. The proofs of most results will exploit the for IZ = 1 ,  2, ... with fo(.) 
following diminishing returns property off,(.). 

THEOREM 4.1. Assumpfions (3.1), (3.2), (3.5), and (3.9) imply for each 
n that f,,(.) is continuous, concave, and nondecreasing on X .  
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Proof. The proof that f,,(.) inherits concavity and is nondecreasing is 
Jell known and will not be reproved. Our proof of continuity is new and 
impler than related proofs in Brock and Mirman (1972) and Schechtman 
1976). 

Let p be a metric on the space in which X lies. To initiate a contrapositive 
roof, suppose f ,  experiences a discontinuity at x o E X .  Then there is a 
E Y(xo)  and a real number y > 0 with the property that for all real 

umbers 6 > 0 there exists x E X such that 

P(X, x o )  < 6 and J,(x, y )  >, y + J,,(x",y"), y E Y(x) .  (4.3) 

Zoncavity precludes the reverse inequality for J). Because C is a convex set 
is possible to select a subsequence (9 ,y)  satisfying (4.3) and (x',yl) -, 

YO, yo). Therefore, contrary to assumption, J ,  is discontinuous at (xo, yo) .  I 
Continuity of JJx, . )  on Y ( x )  for each x E X follows from (3.1), (3.5), 

nd continuity off,- ,( .)  via Theorem 4.1. Compactness of U(x) via (3.9), 
ierefore, implies attainment of the supremum in (4.1) for each x E X and 
vistence of an optimal policy. 
The next two theorems describe the dependence of A, (x )  on x. They lead 

n Corollary 4.2) to sufficient conditions for 0 < dA,(x)/dx < 1. Many 
uthors have proved at least one side of this inequality for special cases of 
ur model. 

THEOREM 4.2. Assumptions (3.1)-(3.3), (3.5), and (3.9) imply for  each n 
iar there exists A , , ( . )  with the property 

A,, (x ' )>A,(x)  if x ' > x .  (4.4) 

ProoJ The theorem would be true if, for 6 > 0, 

J,(X',  A , (XI )  - J,(X', A , (x)  - 6) 2 J,,(x, A ,,(x)) - J,,(x, A ,,(x) - 6 )  2 0. 

he right inequality is implied by the optimality of A,(x). The left inequality 
could be implied by E'(.,  y )  being nondecreasing on (x: (x, y )  E C}. From 
4.21, 

J',*'(x,y)= G'*'(X,Y)  + ~ ~ { f ' " _ * ( s [ y " ) ~ " ' ( ~ , ~ ) J  

1 (3.3) completes the proof. I 

Theorem 4.2 requires neither G(x,  y )  = g(x - y )  nor strict concavity. It 
ssumes concavity of s(., d )  but not monotonicity. Theorem 4.3 obtains a 
irther result when G(x,  y )  g(x - y )  and U(x) = [0, X I .  
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THEOREM 4.3. Assumptions (3.1)-(3.3), (3.5), (3.9), and G(x, y )  = 
g(x - y )  imply for each n that there exists A , , ( . )  with the property 

0 ,< A,,(x') - A,,(x) < X' - x f x < X' (4.5) 

ProoJ The left inequality is (4.4). To prove the right one, let z = x - y  
and rewrite (4.1) and (4.2) as  

./-,,(.u) = sup{H,,(x, 2 ) :  0 < z < x), 

H , , ( x , z ) = g ( z )  + a E f , - , ( s [ x - z , D l ) .  

x E x, 

The right side of (4.5) would be valid if 

0 < H y ( x  t 6 , z )  - HY'(x,  2 )  

= rrE{ f ; _ , ( s [ x  - z ,  0 1 )  slll(x - z ,  D) 

- f ; - I ( s [ X +  6 - z , D ] ) s ' 1 1 ( x + 6 - z , D ) }  (4.6) 

for 6 > 0 as will be shown. 
Concavity of s(., d )  implies 

P ( X  + 6 - z ,  d )  < s y x  - z ,  d).  

If slrl(x t 6 - z ,  d )  2 0 then concavity implies s(x - z ,  d )  < S(X + 6 - z ,  d )  
so 0 >, f '(six t 6 - z ,  d ] )  < f ' (S IX  - z ,  d j )  and 

f , - , ( s[x  t 6 - z ,  d ] )  s y x  + 6 -- z ,  d )  < f n p , ( s [ x  - z ,  d ] )  s y x  - 2, d) .  (4.7) 

If slll(x t 6 - z ,  d )  < 0 < slll(x - z ,  d )  then (4.7) is trivial. If  0 > 
sl'l(x - z ,  d )  > sl'l(x - z t 6, d )  then s(x - z ,  d )  > s(x + 6 - z ,  d )  because 
s( ., d )  is concave. Concavity and monotonicity of f,,- ,(,) and these 
inequalities yield 

0 <f ;- ,(s[x - z ,  d ] )  <./-;,- ,(SIX + 6 - z ,  dl), 

0 > s'l'(x - 2, d )  2 SI  l'(X + 6 - z ,  d )  

and, therefore, (4.7), which proves (4.6). 1 

COROLLARY 4.1. The assumptions of Theorem 4.3 and 0 < A, , (x ' )  < x' 
for some x' > 0 imply 0 < A,(x) for all x 2 x'. 

COROLLARY 4.2. The assumptions of Theorem 4.3 imply 

0 < d A , ( X ) / d X  < 1, x E xo, 
where XO denotes the interior of X 
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Proof. From Theorem 4.4, A , ( . )  is nondecreasing so its discontinuities, if 
any, are upward jumps. These jumps are precluded by A , ( x ) - x  being 
nonincreasing so A , ( . )  is continuous. Monotonicity of A , ( . )  implies differen- 
tiability except, possibly, on a set of measure zero where one-sided 
derivatives exist, so (4.6) implies (4.8). 

Corollary 4.2 treats a more general problem than Schechtman (1976) does 
and its proof seems more straightforward. 

An optimal policy, A, (x )  can be described in further detail if 
Y ( x )  = (0,  X I  and G(x, y )  = p  . (x - y )  for p > 0. After substitution and 
rearrangement of terms, the optimization problem becomes: 

I 

I 
T 

maximize E p x ,  - aT-'yT + p  a'- '(as[y, ,  D , ]  -y,) I I = 1  

subject to 0 < y ,  < x,, t = 1 ,..., T. The first term, p x , ,  is fixed. The second 
term, -u'-'yr, has JJ, 0 for an optimal policy (if a > 0). Therefore, an 
equivalent problem, in the sense of having the same optimal policy for all 
n > 1, is given by the following recursion: 

So(,) = 0, 

f , , (x)  = SuP{J,,(Y): 0 <Y < X I ,  

where J , ( y ) = G ( ~ ) + u E f , , _ , ( s [ y , D ] )  and G ( y ) = p .  ( a E s [ y , D ]  - y ) .  
Let x: denote a global maximum of J,(y). For x, 2 x:, it is optimal to 

consume x, -x:. If .I,(.) is pseudoconcave for all n, then it is 
straightforward to prove that an optimal policy is given by: 

A, (x )  = x A x:. 

What conditions ensure pseudoconcavity of .I,( y)? Corollary 4.3 is an 
immediate extension of Theorem 4.1. 

COROLLARY 4.3. Assumptions (3.4), (3.5), (3.8), and (3.9), imply: 

(i) J , ( y )  is concaue and continuous, 
(ii) A&) = x  A x:. I 

Suppose 

s ( y ,  d )  = dKY), P P  > 01 = 1, 

and 
#(. ) is pseudoconcave and continuous with mode at y ,  . 

When both (3.6) and (4.9) are valid, yo( . )  - y o  >y,. 

(4.9) 
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THEOREM 4.4. Assumptions (3.6), (3.9) and (4.9) imply 

A,(x)  = x A X: 

is optimal. 

Proof. Let p = E(D).  At n = 1, xy = inf( y :  @ ( y )  < ( u p ) - ' }  < y" <.YO. 

We use fo(.) = 0. The inductive assumption is that f n P l ( . )  is concave 
nondecreasing on X. In 

J X Y )  = P(W4' l  Y l  - 1) + ad'(y) E(Df ;- I [D4(Y) l ) ,  

the first term is nonpositive if y > y" > xy and the second term is nonpositive 
if y > J J "  because then d ' ( y )  < 0 (while f'(.) 2 0 and P ( D  0 )  = I ) .  
Therefore, x: < y" so A,(x)  = x A x: and f , (x)  = J,(x A x",. It follows that 
f,(.) is concave nondecreasing if J , ( . )  is concave on [O,x:], which is now 
verified. 

J A Y )  = P ( W 4 b I  - Y )  + aW"-I1D4(Y) l ) ,  

whose first term is concave on [O,x:I because #(.) is concave on [O,y'] and 
x: < y" < y o .  Concavity of the second term is implied by the inductive 
assumption, 4(y) being concave nondecreasing on [0, x : ] ,  and 

Theorem 4.4 shows that, if s ( y ,  d )  = d#(y) .  the shape of #(,) beyond its 
mode doesn't effect an optimal policy in any significant way because an 
optimal policy always returns the state to the concave part of the curve. 

The properties assumed for s(., .) can be relaxed by making further 
assumptions about the distribution of D. A stochastic kernel K(x,p) is TP2 
if, for all x I  < x 2  a n d y ,  < y 2 ,  K ( ~ , , y , ) K ( x ~ , y ~ ) > K ( x ~ , y , ) K ( x ~ . ~ ~ ) .  TPz 
kernels include the exponential and range families of densities which contain 
the binomial, Poisson, gamma, and normal (with fixed variance) densities. 

P ( D > O } = l .  I 

THEOREM 4.5. Assumptions (3.9), (3.8) with p >0, s(. ,  d )  
pseudoconcave and continuous for each d ,  and D with a continuous densitv 
function that is TP, implies: 

A,,(x) = x A X: . 
Proof. This theorem and Theorem 4.1 have similar proofs except it must 

be shown (a) that a convex combination (expectation) of pseudoconcave 
functions using a random variable with a TP2 density is again 
pseudoconcave, and (b) that a nondecreasing nonnegative pseudoconcave 
function of a pseudoconcave function is again pseudoconcave. 

The first claim is Theorem 5.1 of Chapter 3 in Karlin (1968). The second 



CAPITAL ACCUMULATION 25 1 

claim is proven here for differentiable functions. From the definition of 
pseudoconcave functions, f(#{. 1) is pseudoconcave if 

f'(41vl) 4'(Y)(Y'  - Y )  < 0 implies f(Y') < f l y )  

First, f ' ( . ) > O  so the only pertinent case is # ' ( y ) ( y ' - y ) < O .  The 
pseudoconcavity of #(,) implies #( y ' )  < #( y). However,f(.) is nondecreasing 
and pseudoconcave, so f(#[ y ' ] )  <f(#I y ] ) .  a 

5 .  EFFECTS OF THE CONSUMPTION HORIZON 

This section investigates the impact of the consumption horizon on the 
structure of an optimal policy and on its valuation. The following result 
presents sufficient conditions for a longer consumption horizon to induce a 
higher valuation, greater accumulation, and higher incremental benefits per 
unit of added capital. 

THEOREM 5.5 .  For each n and x E X :  

(a) Assumption (3.4) implies 

(b) Assumptions' (3.2), (3.3), (3.4), (3.7) and (3.9) imply 

A"@) < A " +  I ( X ) ;  ( 5 . 2 )  

J',(X,Y + 7) - - J " ( X , Y )  < J " + l ( X , Y  + Y )  - J n +  I @ ,  Y ) ,  
y > 0 i f  ( x , y )  E C and ( x , y  + 7) E C ;  (5.3) 

f , ( X  + Y) -f,(X> <f"+ ,(x + Y) - f n + 1 ( X )  i f  x + Y E  x, Y 0.(5.4) 

Proof. (a) f,(.) 0 initiates a straightforward inductive proof of (5.1) 
that uses (3.4). 

(b) Observe that (5.3) is supermodularity (cf. Topkins (1978)) of 
J , ( x , y )  in ( y ,  n )  for each x,  and (5.4) is supermodularity off,,(x) in (x ,  n). If 
r(a, b)  is supermodular in (a, b )  and M ( . )  is nondecreasing then r(a, m [ b ] )  
also is supermodular in (a, b) .  Hence, i f  f k -  I ( x )  is supermodular in ( x ,  k )  for 
all k < n - 1 then (4.2) and (3.7) imply supermodularity of J,(x,  p) in ( y ,  k )  
for all k < n.  

If J k ( x , p )  is supermodular in ( x , y ,  k )  for all k < n and if C is a lattice 

' Instead of (3.9) and convexity of X ,  it is sufficient to assume that Y(.r) i s  a compact 
lattice for each x, C and .Y are lattices. and Y ( s )  is ascending on A'. 
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then Theorem 6.2 in Topkis (1978) implies A ,  , ( x )  < A k ( x )  for all k < n. 
Assumption (3.9) and convexity of X imply that C is a lattice so it remains 
to establish (5.4). 

Assumption (3.2) implies fl(x + 7) - f l ( x )  >, 0 (Theorem 1) so f o ( . )  0 
implies (5.4) is valid for n = 0. Inductively, if (5.4) is valid for all n < k - 1 
then (5.3) is valid for all n < k .  Then Theorem 4.3 in Topkis (1978) implies 
(5.4) for all n < k. 

We are grateful to Donald M. Topkis of Bell Laboratories for suggesting 
this line of proof. Our earlier version of Theorem 5.l(b) contained super- 
fluous assumptions including concavity of G. 

The next result concerns the limiting behavior off,, and A ,  as n -+ w. 
Suppose 

I 

O < a < l ;  (5.7) 

G"'(x,y) < 00, ( x , y )  E C; (5.8) 

G(x, . )  is nonincreasing on Y(x) ,  x E X ;  (5.9) 
r, 

let r I ( x )  - x  and r , ,  ,(x) = s(r,(x), Dn); then E an- l rn(x)  < w. (5.10) 

THEOREM 5.2. (a) Assumptions (3.1)-(3.5), (3.7), and (3.9) imply for 

(5.1 1) 

n =  I 

each x E X existence of 
A ( x )  = lim An(x).  

n -m 

If G(x,  y )  g(x - y )  then 

0 ,< A(x ' )  - A ( x )  < x' - x ,  x < x. (5.12) 

(b) Assumptions (3.1), (3.2), (3.4), (3.5), (3.7), (3.9), and (5.7)-(5.10) 
imply for each x € X existence of 

f ( x )  3 lim f , ( x )  
n - 7 ~  

(5.13) 

with f(.) being concave and nondecreasing on X .  

Proof. 

(b) 

(a) From (5.2) An(x )  <A,+ ,(x) < x for every n and x. Hence, 

Optimality of  A,(x), (5.9), (3.7), and f n -  ,(.) nondecreasing imply 
monotone convergence yields (5.1 1) and, via Theorem 4.3, it yields (5.12). 

fn(x) =G(x ,An(x) )  + aEfn-1(S[An(x), On11 

< G(x, 0) + aJZf,- ,(dX, D,)) 
n 

< a'-'EG(r,(x), 0). 
f = I  
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Concavity of G implies 

for all (uo, 0') and (u, u )  E C. However, G") < 0 from (5.9) so 

n 

f,,(x) < 2 a'-'E[G(x, 0) + G"'(x, O)(rt(x) - x)] 
f = 1  

00 < [G(x, 0) - xG"'(x, O)]/[ 1 - a]  + G"'(x, 0) af-'rt(x), 
t = l  

which is finite from (5.8) and (5.10). Therefore, fl(x),f2(x), ..., is a bounded 
monotone sequence which implies (5.13). Monotone convergence implies 
that f,(.),fi(.), ..., endow f(.) with their properties of concavity and 
monotonicity. I 

The next result uses a familiar argument from inventory theory (Sobel 
1970a) to prove thatf( . )  satisfies a functional equation analogous to (4.1). 
Let 

J(x,Y) = G ( ~ , . Y )  + aEf(s[y, Dl), 

which exists by virtue of the following proof. The proof is much simpler than 
those of similar theorems in Brock and Mirman (1972) and Schechtman 
( I  976). 

THEOREM 5.3. Assumptions (3.1), (3.2), (3.4), (3.5), (3.7), (3.9), and 
(5.7)-(5.10) imply 

f(x) = SUP{J(X, y ) :  y E Y(x)}, x E x, 
(5.14) 

= 45, A [XI). 

Proof. For all x and n, f,,- I(x) <f,,(x) so 

J , _ I ( ~ , ~ ) < J J , ( x , y ) ~ f ( x ) ~ B ( x )  < 00, Y E  Y(xh x E ~ ,  

where B(x) is the bound developed in the proof of (b) in Theorem5.2. 
Therefore, {J,,(x, y ) )  is a bounded monotone sequence so J,(x, y) < J(x, y )  
and 

Convergence off,, to f implies 
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(5.15) 

whereas the right side of (5.15) is 

sup( lirn J , ( x , y ) :  y E Y ( x ) } .  
n -00 

Therefore, for (5.15) it is sufficient to prove 

lim sup{J,(x,y):yE Y(x)} = sup( lim J , ( x , y ) : y E  Y ( x ) } .  (5.16) 
n +w n -03 

The existence of the limit on the left side of (5.16) is implied by (5.13). For 
each n,  Jn(x, .)  is continuous on Y ( x )  = 10, x]  so Jn(x, .)  -, J(x,  .)  uniformly 
on 10, x]  because the Dominated Convergence Theorem implies 
Efnn-l(sl., D])-+Ef(s[.,D]). Therefore, 

0 = lirn sup(J(x, y )  - Jn(x,  y) :  0 < y < x ) ,  
n -00 

which implies (5.16) and, consequently, (5.15). I 
A ( . )  inherits the properties of { A n ( . ) } .  

COROLLARY 5.1. The assumptions of Theorem 5.2(a) imply 

0 < A ’ ( x )  < 1. (5.17) 

6. ACCUMULATION USING A STATIONARY POLICY 

Suppose the same policy A (.), arbitrary and possibly suboptimal, but 
satisfying (5.12), is used each period. Then reinvestment and consumption 
each period t are given by A or,) and zr - A orr). where xI denotes the random 
asset level at the beginning of period t. Successive asset levels are connected 
by 

X,+ 1 = SlAOr,), D,I. t = 1, 2 ,... 9 (6.1) 

or, equivalently, by a kernel K ( A ( x ) ,  r) which is the probability of being in 



CAPITAL ACCUMULATION 255 

f G X if A ( x )  is the action taken at state x E X (cf. Feller (197 1)). More 
formally, consider the state space X with a Bore1 field of subsets B. Then 
K ( . ,  . )  is a probability kernel if K ( x ,  .)  is a probability measure on B for 
each x E X and K ( . ,  f) is a B-measurable function for each r€  p. 

Whether or not the Markov processes x ,  converge to a stationary 
distribution is an important question. Convergence results in certain cases 
are given in Brock and Mirman (1972), Brock and Majumdar (1975), 
Mirman and Zilcha (1975), Schechtman (1976), and Schechtman and 
Escudero (1977). By comparison with these papers, the approach here relies 
on properties of the stochastic kernel K(. ,  .). Therefore, the proofs are more 
direct and do not in any essential way depend on scalar properties of x, and 
y ,  (although the theorems are presented only for this case). 

K ( . ,  .) induces the following operator T which takes bounded measurable 
functions h into bounded measurable functions: 

There is a dual representation which takes probability measures Q into 
probability measures; namely, for each f G X, 

(Rosenblatt 1967). The operator T is equicontinuous if it maps continuous 
functions into continuous function. For the remainder of this section, 
suppose X is a compact set, 0 E X, and s(., d )  is continuous; note that (5.12) 
implies continuity of A ( . ) .  Therefore, it is straightforward to show that 
K (  ., . ) induces an equicontinuous family of transformations. Consider the 
following three conditions: 

(A) 
(B) 

K ( x ,  Z) > 0 for all open intervals Z c X. 
There exists a compact subset L of X, such that for each x E L, 

K ( x , L ) =  1 and the operator T defined in (6.3) is irreducible on L in the 
sense of Rosenblatt (1967, p. 476). 

( C )  Neither (A) nor (B) holds. 

Condition (A) is satisfied, for example, by models where s(., .) is linear, 
as in Schechtman and Escudero (1977), where s ( y ,  d )  = ry + d. 
Condition (B) is often proven as a preliminary result, as in Section 3 of 
Brock and Mirman (1972). Condition (C) is important when determining if a 
stationary distribution concentrates all its mass at a single point. The three 
conditions separate the question of the existence of a unique stationary 
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distribution from the question of the existence of at least one, perhaps many, 
invariant measures on the set X ,  given some policy A ( x ) .  Some of the 
literature confuses the two questions. 

THEOREM 6.1. I f  X is compact and K ( . ,  .)  induces an equicontinuous 
familji of transformatrions, then: 

(i) 
(ii) 

(iii) 

There ‘is at least one invariant measure on X .  
(A) implies there is only one invariant measure on X and it is the 

unique positive stationary distribution on X .  
(B) implies there is a unique invariant measure fo r  each closed 

irreducible subset L of X ,  and this measure is the unique positive stationary 
distribution on L. 

(iv) Suppose also, for some y > 0, P { s ( A [ x ] ,  D )  > x )  = 1 for all 
x E 10, y ) .  Let x* = sup{x: x E X) and suppose L = ( x :  y < x < x ” )  is 
irreducible. Then there is a unique stationary measure on X which has 
positive probability only on open intervals that intersect with L.  

(v) If 0 is an absorbing state then ( C )  implies that there is a unique 
stationary distribution concentrated at 0 (so P{lim inf x,  = 0) = 1 and the 
process tends to gets arbitrarily close to 0). 

Part (ii) is Theorem 2 in Feller (1971, p. 272). Parts (i), (iii), (iv), 
and (v) are implied by Theorems 3 and 4 in Rosenblatt (1967) and 
Theorem 2.4 in Jamison (1964). 

Boylan (1977) proves theorems similar to (iv) and (v) although his 
approach is different. Two examples illustrate the power of the theorem. 
First, for the models in Schechtman (1 976)’ and Schechtman and Escudero 
(1977), part (ii) of the theorem immediately implies convergence to a unique 
stationary distribution. Second, the model in Brock and Mirman (1972) has 
an equicontinuous kernel on a compact set so it necessarily possesses an 
invariant measure. This avoids the lengthy argument in Section 4 of Brock 
and Mirman’s paper. Moreover, our results depend on irreducibility of an 
operator on a subset of the set of states so one can focus on states that 
“communicate” rather than on fixed points of growth functions. This permits 
simplified proofs of the results in Section 3 of Brock and Mirman’s paper. 
Boylan (1977) gives such a simplified proof. 

Proof. 

a 

7.  EXTENSIONS 

The results thus far concern a model whose structure is stationary over 
time and in which growth does not occur. These restrictions can be relaxed. 
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Suppose, for example, that utility alters with age or time as well as with 
wealth. Let Gk(x,  y )  denote the utility function appropriate to consumption at 
age n - k .  Then all results in Section 4 and Theorem 5.1 remain valid if G is 
replaced by G ,  in the assumptions in Section 3. As one example that 
generalizes Hakaanson (1973), let G k ( . ,  .)  

If the random variables D , ,  D, -  I ,..., D , ,  D ,  exhibit a dependence, let 
Tk(D,  ,..., D , - , +  I )  denote a statistic of D ,,..., D, - k + ,  that is sufficient for 
D , .  Let @ k  be a function which maps (Tk, D n - k )  into T k .  Such functions 
must exist, because the entire past history is a sufficient statistic. Then the 
results in Sections 4 and 5 through Theorem 5.1 remained unchanged if each 
Y,,(x) is a convex set and Y,(x)  C_ Y,(x’)  if x’ > x  for each n. If Y,,(x)  is 
appropriately convergent in n for each x,  then generalization of 
Theorems 3.2, 5.3, and Corollary 5.1 can be obtained. 

Exogenous price processes arise when there is a random sequence of prices 
pI  , p 2 ,  p3 ,..., such that 

0 if k > 1. 

G(x,Y, P )  = u@[X - Y 1 )  

and the constraint set is now Y ( x , p )  for each fixed value p of p. If the 
assumptions in Section 3 are valid for each fixed value p of p, then the results 
in Sections 4 and 5 are true for each fixed p .  For example, Theorem 5.1 
becomes f, - 1 (x ,  P )  <f , (x ,  P ) ,  A ,  - I (x ,  P )  < ’4 ,(x, P ) ,  etc. 

Undiscounted Utilities 

The results in Section 4, Theorems 5.1 and 6.1 are true for all values of 
the discount factor a >, 0. If a 2 1 then generally S,,(x) -+ 00 as n + 00 so 
Theorems 5.2b and 5.3 are uninteresting. The validity of Theorem 5.2a is an 
intriguing issue when a = 1. 

The overtaking criterion (see Brock and Mirman (1973); Brock and 
Majumdar (1975) and their references to the work of Von Weizsacker, Gale, 
and Gale’s students; Denardo and Rothblum (1979)) is currently in vogue 
when utilities are undiscounted. Consider, instead, the average gain criterion 
from the theory of Markov decision processes, namely, 

T 

T ( Z ) x ) =  lim G(x j , y , ) /T  
T+CC j = ~  

and search for a gain-optimal policy Z* such that 

T(Z* I x) = sup T(Z I x )  for all x E X .  
i! 

It can be shown that a policy is gain optimal if it is overtaking optimal 
(using lim in the definition). The converse is generally false so gain 
optimality is a weaker criterion than overtaking optimality. 
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Blackwell (1962), Derman (1962), and subsequent writers have explored 
the connection between the discounted criterion as a T 1 and the gain 
criterion. In order to apply Derman (1962) as in Sobel (1970b), suppose X is 
a finite set and Y ( x )  is a finite set for each x E X. Then C is a finite set so 
the set A ,  of mappings from X to Y (i.e., x is mapped into Y(x)  for each 
x E X) is finite. Let A denote the finite subset of A,  that comprises mappings 
satisfying (5.12). Thus A is finite too. 

If a < 1, Theorem 5.2(a) asserts the existence of an optimal policy that is 
a member of A.  Let A(x,  a) denote the dependence on a < 1 of such a policy 
and let a , ,  a 2 ,  ... satisfy aI < 1 for all k and aI --t 1. Then A ( . ,  a k )  is an 
element of A ,  a finite set, so the sequence A ( . ,  a,), A ( . ,  a2) .  ..., must contain a 
subsequence all of whose members are the same element of A. Let A ( . )  E A 
denote the policy corresponding to such a subsequence a ,,(, ),  a,,(? ,,..., Le., 
A ( . )  = A ( . ,  a,,(,)) = A ( . ,  a,,(*)) = . . .  . Then the argument in Derman (1962) 
establishes 

W ( . ) l x )  = fim (1  - a,,fk)), x E X ,  
'x) 

where f ( x ,  a) makes explicit the dependence o f f (  . ) on the value of a < 1. 
Therefore, A ( . )  is gain optimal. But A ( . )  E A so A ( . )  satisfies (7.3). 

Let N denote the set of natural numbers (0, 1,2, ...}. Then the preceding 
argument justifies the following claim. 

THEOREM 7.1. If X =  {O, 1 , 2  ,...,a) for  some o E N and Y ( x )  = 
{ [0,  x ]  n N}, x E X then the assumptions of Theorem (5.2a) imply existence 
of a gain-optimal policy that satisfies (5.12). 

It would be interesting to verify Theorem 7.1 without restricting X and 
U(x)  for each x to be finite sets. If only X is finite, then the problem still 
seems surprisingly delicate. Suppose in this case there exists 

A ( x )  lim A (x ,  a), s E X .  (7.4) 
n T I  

Results of Fox (1967) show that A ( . )  may not be gain optimal unless the 
Markov chain structure induced by A ( . )  is also the chain structure induced 
by every one of A ( . ,  ak), k = 1, 2 ,..., where a, T 1. 

The difficulty of establishing (7.4) is another obstacle to generalizing 
Theorem 7. I .  The difficulty does not seem to stem from finiteness of X. One 
might conjecture that optimal consumption is a nonincreasing function of a 
so that A(x,  . )  is nondecreasing for each .Y E X. Then the limit in (7.4) would 
exist because A ( x ,  a)  E Y ( x )  so A (x, a )  < .Y from Y ( x )  = 10. -, 1 and A ( s .  . ) 
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would be a bounded monotone function. To establish monotonicity of A ( x ,  .) 
one might exploit Theorem 5.2(a) and first establish monotonicity of A&, . )  
for all n (let the dependence on a of A, , (x )  and f,,(x) be explicit). A 
straightforward inductive proof shows for each n that f,,(x, a) is concave and 
nondecreasing as a function of a. However, this property does not ensure 
monotonicity for A, , (x ,  .). An argument similar to the proof of Theorem 4.2 
shows that a sufficient condition would be Jj:'(x, y, a )  nondecreasing in a 
(for each n ,  x, and y). In turn, J!,*'(x,y, .)  would be nondecreasing if 
f!'! ,(x, a )  were a nondecreasing function of a (for each x). This last step has 
not been accomplished nor is there a counter example. 

Bewley (1977) proves, essentially, that A(x,  .)  is nondecreasing for each 
s E X when X = R + , Y ( x )  = 10, x], s ( y ,  d )  = y + d, and G(x, y )  z g(x - y )  is 
differentiable and strictly concave. The steps of his proof are similar to those 
above which we had previously outlined. 
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